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SUMMARY

FLITE3D is a multigrid Euler solver. It is used extensively by British Aerospace in aircraft design and
simulation. This paper presents experiences in parallelizing this industrial code. Owing to the employment
of an agglomeration-based multigrid technique, the communication overhead on the coarser meshes
could readily erode any gain from the use of parallel computers. The parallelization of the code therefore
required careful design and implementation. The strategy adopted in the parallelization of the code,
including the use of data structures and communication primitives, is described. Numerical results are
presented to demonstrate the efficiency of the resulting parallel code. Copyright © 2001 John Wiley &
Sons, Ltd.

KEY WORDS: multigrid algorithm; parallel computing; unstructured mesh

1. INTRODUCTION

Computational fluid dynamic (CFD) simulations are now increasingly being used as a
complementary tool or as an alternative to wind tunnel experiments in the aerospace industry.
The drive towards faster, more accurate simulations will inevitably lead to the requirement of
parallel super-computers.

The FLITE3D suite of codes [1] is a complete set of CFD routines for obtaining Euler
predictions over complex aerodynamic configurations. FLITE3D was developed by Computa-
tional Dynamics Research Limited at the University of Wales, Swansea, and supplied to
British Aerospace. It is now under extensive use and development by British Aerospace.

The present work is the result of a project in parallelizing the FLITE3D codes, funded by
British Aerospace. The codes of concern are mainly the flow solver, FLITE3D-FS, and the
preprocessor, FLITE3D-PP. The flow solver is an explicit finite element Euler solver based on
unstructured meshes, using Runge–Kutta time integration. It employs an agglomeration-based
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multigrid algorithm [2–4] to speed up the calculation. Use of a multigrid algorithm makes
efficient parallelization more challenging.

Parallelization of structured mesh-based multigrid algorithms and unstructured mesh-based
non-nested multigrid algorithms has been extensively documented in previous work (e.g.
References [5–8]). However, there have been only few attempts, as far as the authors are
aware, to parallelize unstructured agglomeration-based multigrid algorithms. In Reference [9],
an agglomeration-based multigrid algorithm was parallelized based on independent partition-
ing of each level of mesh in the multigrid hierarchy. The advantage of this strategy is that by
partitioning each level independently, load balance as well as the processor boundary sizes on
each mesh level is easier to control. The disadvantage is that the partitions of coarser meshes
may bear no relation to the partition of the corresponding finer meshes. Restriction and
prolongation would therefore have to be preceded by a substantial communication step
between the two levels. To reduce the inter-mesh communication, the coarse level partition
were renumbered to maximize the overlap with the fine level partition. Reasonable scalability
has been reported on very large meshes [9]. This approach may be further improved by the use
of advanced partitioning tools (e.g. Reference [10]) to force the coarse level partition to be as
close to the fine level partition as possible.

In the present work we have designed and implemented an alternative approach, which
eliminates the need for communication between different mesh levels during the restriction and
prolongation phases. On the finest mesh, following our previous work [11] on FELISA [12,13]
(an inviscid flow solution package employing the same technology as FLITE3D, originally
developed by Imperial College London, University of Wales, Swansea and Massachusetts
Institute of Technology for NASA), we have taken the route of using element-based partition-
ing, with the corresponding data structure to ensure the correct numerical algorithm. For the
multigrid part of the code, the partition of a coarser mesh is inherited from the corresponding
finer mesh. A concept of ‘active nodes’ is introduced. These ensure that the inter-grid
communication during the restriction and prolongation phases of the multigrid algorithm is
completely eliminated and the coarse mesh calculation is reasonably load-balanced. Asyn-
chronous communication is also employed, which has been found to improve the efficiency of
the parallel code significantly. Numerical results show that our approach leads to an efficient
parallel multigrid finite element code when the size of the mesh is relatively large.

In Section 2 the equations and numerical algorithms for the flow solver part of FLITE3D
are introduced. In Section 3 the methodology of single grid parallelization is given. Strategies
employed in the parallelization of the multigrid phase of the code are detailed in Section 4. The
performance of the parallel FLITE3D code and the effect of asynchronous communication are
discussed in Section 5. Section 6 concludes the paper.

2. INTRODUCTION OF FLITE3D-FS

2.1. The Euler sol6er

The Euler algorithm is solved by a Galerkin finite element method using Runge–Kutta time
integration, explicit artificial dissipation [14–16] and a side-based data structure [17]. This
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solution procedure is briefly summarized below. Further details can be found in References
[12,17].

The compressible Euler equations can be expressed as
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Here (u, 6, w) are the components of velocity, p is the pressure, E is the total energy and r is
the density. The set of equations is completed by the addition of the perfect gas equation of
state
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where g is the ratio of the specific heats.
The solution to these equations is obtained over a spatial domain V with boundary G. The

weak formulation for Equation (1) would be to find U(x, t) such that&
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for every suitable weighting function W(x), where n j denotes the jth component of the unit
outward normal vector n to the boundary G.

A finite element approximation is constructed. The spatial domain V is represented by an
unstructured assembly of tetrahedral elements. A piecewise linear approximation is sought of
the form
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U*(x, t)=%
J

UJ(t)NJ(x) (3)

where the summation is over each node J (15J5np) of the mesh; UJ(t) denotes the
(unknown) value of the approximation U* at node J at time t, and NJ(x) is the finite element
shape functions associated with node J. Using the variational statement of Equation (2), the
Galerkin approximate solution is constructed as the function U* such that
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The integrals can be evaluated by summing the individual element and boundary face
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where the summations are over the elements containing node I.
Substituting U* by Equation (3), the left-hand side of Equation (4) can be evaluated to give
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Here ML is the lumped finite element mass matrix, which is an approximation to the true mass
matrix M, with

MIJ=
&

V
NINJ dV

The approximation is valid since the nodal shape functions are non-zero only over those
elements containing that node. Hence, M is an almost diagonal matrix.

The right-hand side of Equation (4) can be approximated over a tetrahedron Ve by taking
the average of the flux over the four nodes I, J, K and L, of the tetrahedron
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where Ve is the volume of the tetrahedron.
In a side-based data structure, suppose that node I is connected by sides of the mesh to

nodes J1, J2, . . . , JmI
(assuming here that I is an interior node; for boundary nodes the

following procedure needs to be suitably modified) and using Equations (5) and (6), it can be
shown that Equation (4) can be written as
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Because the mass matrix is lumped into a diagonal matrix, time integration is explicit via a
K-stage Runge–Kutta procedure

Un+k/K=Un−akDt [ML]−1[R(Un+ (k−1)/K)−D(Un+ (k−1)/K)], k=1, . . . , K (8)

where R is the right-hand side of Equation (7) and D is the explicitly added artificial
dissipation. Dt is the maximum allowable local time step, which varies for each node. ML is the
lumped mass matrix. Usually K=5 and a1=

1
2, a2=

1
6, a3=

3
8, a4=

1
2 and a5=1. In the interests

of computational efficiency, the dissipation term is only updated at k=1 and kept frozen for
the remaining four stages of the Runge–Kutta procedure.

Far-field boundary conditions are applied through the modification of the boundary flux as
the solution of an approximate one-dimensional Riemann problem. Wall boundary condition
of zero normal velocity is imposed by projection. Further details for the choice of the time
steps, the artificial dissipation scheme, flux calculation and boundary treatment can be found
in References [12,18].

2.2. The multigrid acceleration

The convergence rate of the aforementioned explicit integration scheme is strongly dependent
on the size of the mesh. This is because the largest time step that can be employed is
proportional to the cell size. When used for elliptic systems, explicit integration schemes of the
kind in Equation (8) are known to suffer from an inability to eliminate smooth errors. The
idea of multigrid [19] is to employ a series of meshes, each coarser than the its predecessor,
such that components of smooth low-frequency errors will appear as high-frequency errors on
the coarser mesh and can therefore be readily damped using the above integration scheme. The
increasing cell size on the coarser meshes also allows larger time steps to be used.

Different multigrid strategies have been proposed in the literature [20]. One possibility is to
employ a sequence of independently generated coarse meshes [17,21]. In this approach, the
meshes are generally non-nested. It is therefore necessary to construct the prolongation
operator through linear interpolation, with the restriction operator taken as the transpose of
the prolongation operator. However, in contrast to structured meshes, where coarse meshes
can be generated easily and quickly, a non-nested strategy for unstructured meshes are more
difficult and time consuming.

An alternative strategy [2–4] is to form the coarse mesh by agglomerating neighbouring
nodes of a fine mesh. In this approach, seed nodes are merged with neighbouring nodes to
form coarser mesh nodes. Looking at it from another perspective, control volumes of nodes to
be merged are agglomerated to form polyhedra. The resulting coarse mesh is therefore not of
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conventional tetrahedral type. The coarse mesh equation on each coarse node is formed
directly by combining the coefficients of the equations for the fine ‘leaf’ nodes. This is the
approach adopted in FLITE3D.

Figure 1 illustrates the procedure of agglomeration on a simple mesh. Figure 2 illustrates a
tetrahedral mesh around an M6 wing, the corresponding control volumes and two levels of
coarsened meshes. For illustration purposes, the control volumes of the nodes on the two

Figure 1. (a) A simple triangular mesh. (b) The control volumes around each nodes. Three seed nodes
are chosen. (c) The neighbouring nodes of seed node 1 are agglomerated with it to form the first coarse
grid node; the unagglomerated neighbouring nodes of seed node 2 are agglomerated with it to form the
second coarse grid node; and finally the unagglomerated neighbouring nodes of seed node 3 are

agglomerated with it to form the third coarse grid node.

Figure 2. The original mesh (top left), the control volumes (top right), after one level of coarsening
(bottom left) and after two levels of coarsening (bottom right).
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PARALLELIZING FLITE3D—A MULTIGRID FINITE ELEMENT EULER SOLVER 815

coarse meshes are drawn instead of the nodes themselves. Further details about this multi-
grid technique based on agglomeration can be found in References [2–4].

The non-linearity in the right-hand side of Equation (8) is treated with the full multigrid
scheme [19]. The details of the multigrid strategy employed are best described in a two-grid
setting. Throughout the rest of this paper, the subscripts ‘f’ and ‘c’ are used to denote ‘fine’
and ‘coarse’ mesh quantities respectively. If we denote the right-hand side of Equation (8)
as r and simplify the notation n+k/K as k, then at the last stage of the Runge–Kutta
procedure, Equation (8) on a fine mesh can be written as

U f
k=U f

0−akDt [ML]−1r(U f
k−1), k=K

At this point, the flow field and the corresponding residual are restricted to the coarse
mesh to give the initial flow field of

U c
0=I f

cU f
K (9)

and initial residual of

r c
0=I f

cr(U f
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where I f
c in the two equations are restriction operators that may not necessarily be the

same. The calculation then proceeds on the coarse mesh with

U c
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The two extra terms on the right-hand side of Equation (11) ensure that when the fine
mesh has fully converged (r c

0=I f
cr(U f

K)=0), the coarse mesh equation will be automatically
satisfied by the initial field (9). Thus, it is the fine mesh residual that is driving the coarse
grid solution. The solution of the coarse mesh will be prolongated and added to the fine
mesh as a correction, to form the initial field for the next fine mesh integration

U f
0=U f

K+I c
f(U c

K−U c
0)

where I c
f is the prolongation operator.

In FLITE3D residuals on the fine mesh are lumped to form the residuals on the coarse
mesh. The fine mesh fields are volume averaged to give the initial coarse mesh field. The
prolongation operation is simply carried out through injection. For the Euler equation this
combination of the restriction and prolongation is sufficient to satisfy the fundamental
multigrid principle [19], which states that the sum of order of restriction and prolongation
operators used should be greater than the order of the equation solved. Figure 3 illustrates
the performance of the multigrid algorithm compared with the single grid algorithm.
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Figure 3. The convergence of multigrid (with four levels) and single grid algorithms on a mesh around
an M6 wing with 29784 nodes, 208880 sides and 173176 tetrahedra at 3.06° angle of attack and Mach

number 0.84.

3. SINGLE-GRID PARALLELIZATION

The single grid parallelization is carried out by domain decomposition. The finite element mesh
is partitioned using the graph partitioning package METIS [22]. There are a number of
approaches to the partitioning and the subsequent parallelization of finite element algorithms.
The partitioning could either be element-based or node-based. Following earlier work in
parallelizing a single grid finite element solver FELISA [11], the element-based approach is
adopted. Here, the dual graph of the tetrahedral mesh is used by METIS to generate a
partition of elements. As illustrated by Figure 4, after the partitioning, each element belongs
uniquely to a processor. Each side also belongs uniquely to a single processor. On the other
hand, nodes of the mesh at the boundary of the partition are duplicated. Figure 5 shows a
mesh around a Dassault Aviation FALCON aircraft, partitioned into four subdomains using
METIS [22].

Figure 4. An illustration of how a mesh is partitioned.
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Figure 5. A mesh around a FALCON aircraft partitioned into four subdomains (only surface mesh on
the body of the aircraft shown).

The main operations of FLITE3D-FS are either side-based or face-based for boundary
calculations. For example, the right-hand side term R in Equation (8) is calculated by the
pseudo-code in Figure 6. Because of this, in the parallel calculation it is important that the
sides are unique to processors (faces on the physical boundary are unique to processors
anyway). This is shown in Figure 4, where sides on the processor boundary of processor 1 are
drawn with broken lines to illustrate that these sides do not exist on processor 1. The parallel
pseudo-code corresponding to the sequential code in Figure 6 is given in Figure 7. The parallel
code is essentially the same as the sequential code, except that the loops are over the number

Figure 6. Pseudo-code for two typical sequential FLITE3D-FS loops.
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Figure 7. Pseudo-code for the parallel FLITE3D-FS loops on a processor p, corresponding to Figure 6.

of sides and boundary faces residing locally on each processor. An exchange and summation
operation is also carried out at the end of the local summations so as to collect the partial
sums on each processor to give the correct R values. For instance, in Figure 4, after the local
summations on processor 1, node 6 will have contributions from edges (sides) e1, e2, e3 and e4.
Likewise, after the local summations on processor 2, node 6 will have a contribution from edge
e5. By exchanging the R terms between the nodes on the processor boundary and summing
them, node 6 on both processors will have the correct contribution from all the five edges
e1, . . . , e5. This exchange and sum operation will also be used later in parallelizing the
multigrid algorithm, and shall be referred to as the ExSum operation.

4. STRATEGIES FOR MULTIGRID PARALLELIZATION

During the multigrid process, the restriction of residuals is achieved by simply summing the
residual values of the fine nodes that agglomerate into a coarse node. The restriction for the
flow variables is performed similarly, except that the sum is weighted by the volumes
controlled by the fine nodes (normalized). The prolongation is carried out by injecting the
correction on the coarse nodes to the constituting fine nodes.

4.1. Partition of the coarse meshes

It can be seen that the data dependence during the multigrid process is between the coarse
mesh nodes and their corresponding fine mesh nodes. We define the location of a node to be
the processor it is on, and the lea6es to be the fine mesh nodes that corresponds to a coarse
node (the root). In a parallel setting, the leaves of a coarse root may be scattered around
several processors.

One way of decomposing a coarse mesh is to partition it independently. This approach has
been adopted in Reference [9]. The advantage of this approach is that by partitioning each
level independently load balance as well as interprocessor communication on each level is
easier to control. The disadvantage is that the partition of a coarse mesh may bear no relation
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to the partition of its corresponding finer mesh. Restriction and prolongation have to,
therefore, be preceded by a substantial communication step.

An alternative approach, which we have proposed for this work, is for the coarse mesh to
inherit its partition from that of the corresponding fine mesh. Through careful implementation,
the need for communication between different levels of meshes is eliminated. This approach
also makes the coding relatively straightforward with almost no extra code necessary other
than what is required for parallelizing the single grid algorithm.

Roots inherit their locations from their leaves. In others words, if the leaves of a root exist
on three processors, then the root will also be duplicated on three processors. The main reason
for this duplication of root nodes is that, through this arrangement, communication between
different levels of mesh are eliminated completely. The only communication related to the
multigrid procedure is that of the ExSum operation seen in Figure 7, performed once on the
coarse meshes after local restriction, as shall be explained in Sections 4.2 and 4.3.

The inheritance relationship between roots and leaves is illustrated in Figure 8. In the top
part of the figure, a simple one-dimensional mesh with seven nodes and six sides is shown
agglomerated into a mesh with three nodes and two sides. In the bottom half of the figure, the
mesh at level i was partitioned into two as shown. Next, the locations of the three root nodes
61, 62 and 63 at level i+1 are decided. Root 61 has all its leaves (u1 and u2) on processor 1,
so it will reside only on processor 1. Root 63 has all its leaves (u6 and u7) on processor 2, and
will therefore reside only on processor 2. However, because root 62 has leaves existing on both
processor 1 (63 and 64) and processor 2 (64 and 65), it is duplicated on both processors.

Coarse mesh sides remain unique among processors, as in the single grid case.

4.2. Parallelization of the restriction operation

As mentioned at the beginning of Section 4, restriction of residuals is through simple
summation over the fine grid nodes that agglomerate into a coarse node, while restriction of

Figure 8. An illustration of the sequential (top) and parallel (bottom) restriction phase.
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flow variables is through summation of flow variables over the corresponding fine grid nodes,
weighted by the volumes controlled by these fine nodes, with the weights normalized for
conservation of flow fields. The pseudo-code for the sequential operation on a flow variable U
is given in Figure 9.

To parallelize this operation, the restriction can be performed by summing the contributions
from the local leaves, followed by an ExSum operation. However, for roots on the processor
boundary, there is a possibility of overcounting. For example, in Figure 8, after local
restrictions, on processor 1

Uc(62)=wf(u3)Uf(u3)+wf(u4)Uf(u4) (on processor 1)

and on processor 2

Uc(62)=wf(u4)Uf(u4)+wf(u5)Uf(u5) (on processor 2)

After an ExSum operation, which exchanges and sums the field Uc on the processor boundary
(in this case only node 62 is on the processor boundary)

Uc(62)=wf(u3)Uf(u3)+2wf(u4)Uf(u4)+wf(u5)Uf(u5) (on both processors)

Therefore, the contribution from the fine node u4 is double counted. In general, this
overcounting will happen to the nodal values of all fine nodes that are duplicated among
processors.

The concept of an acti6e node is therefore introduced to avoid this overcounting. A fine
mesh node is active on one and only one processor, even if it is duplicated among many
processors. For example, in Figure 8 node 64 is active only on processor 1. The node 64 on
processor 2 is thus marked with an empty circle rather than a solid one. A broken line is used
to link this node with its root 62 on processor 2 to illustrate that there is no contribution from
the non-active leaf node 64 to its root node 62.

By taking contributions only from active fine nodes residing locally, followed by an ExSum
operation, the correct parallel restriction operation is achieved. The pseudo-code for parallel
restriction is given in Figure 10.

Figure 9. Pseudo-code for the sequential restriction operation.
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Figure 10. Pseudo-code for the parallel restriction operation on a processor p.

4.3. Parallelization of the prolongation operation

The prolongation is through a simple injection of the coarse mesh correction to the leaf nodes
on the finer mesh. Because the locations of root nodes are inherited from their leaf nodes, a
root node and its leaf nodes always exist on the same processor. Therefore, the parallel
prolongation operation employs exactly the same code as the sequential prolongation opera-
tion, and the injection of the coarse mesh correction is carried out locally on each processor.
The pseudo-code for the parallel prolongation is given in Figure 11.

5. PERFORMANCE OF THE PARALLEL FLITE3D CODE

The parallel FLITE3D-FS code has been implemented using the MPI message passing
standard. The code has been tested on a Cray T3E-900 parallel super-computer, with 450 MHz
Alpha (EV5/6) processors, each having a peak performance of 900 MFlop s−1 and 128 Mbytes
of memory. The observed latency and peak bandwidth for point to point communication using
MPI is around 30 ms and 180 MB s−1 respectively. It is possible to achieve better communica-
tion performance by using the Cray specific SHMEM facility, although we have not imple-
mented SHMEM in FLITE3D-FS for reasons of portability.

Initially, the message passing in the ExSum was implemented using MPI–SEND and
MPI–RECV, as shown in Figure 12. These are blocking operations in the sense that the calls
do not return until the message to be sent is copied into a buffer, or the message to be received
is copied into the receiving array. Although blocking send and receive have the advantage that

Figure 11. Pseudo-code for the parallel prolongation operation on a processor p.
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Figure 12. The implementation of the ExSum using blocking MPI calls.

the sending and receiving array array–send and array–rec6 can be re-used immediately, the
performance in using the blocking communication primitives is not satisfactory. To illustrate
the problem we have applied the FLITE3D-FS on a small mesh around the M6 wing, with
29784 nodes, 208880 sides and 173176 tetrahedra. On this small problem, the speed-up (Figure
14) of the multigrid code with four mesh levels on 64 processors is only 12. This is partly due
to the fact that this case is quite small. As illustrated in Table I, on 64 processors each
processor has on average only 208880/64:3264 sides on the finest level. This reduces rapidly
to 1199/64:19 sides per processor on the coarsest mesh. However, the total length of
messages in the ExSum routine reduces more slowly, from 27254 words to 8482 words per field
variable. Thus, on the coarse meshes more time is spent in the communication rather than

Figure 13. The implementation of the ExSum using non-blocking MPI calls.
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Table I. Detailed breakdown statistics on 64 processors; M6 mesh, runs to
convergence after 170 iterations (tolerance 10−4).

1 2 3Mesh level 4

Total number of sides 208 880 36 877 6593 1199
3264 576Average number of sides 103 19

Computation time 12.2 2.5 1.1 0.7
11 13 20 38Average number of neighbours
27 254 14 202Total length of messages 8824 8482

Communication time (blocking) 20.8 17.5 16.0 14.8
9.7 9.1 9.6 10.9Communication time (non-blocking)

computation. This slow reduction (or even increase from level 3 to level 4) in the total message
length is an unfortunate consequence of the fact that a coarse root that has leaves on P
processors is duplicated on these P processors. Therefore, more and more processors share
nodes as one moves from the fine to the coarser meshes. Two processors are said to be
neighbours if they share more than one node. The average number of neighbours per processor
for this small case increases from 11 on the finest mesh to 38 on the fourth level of mesh.

By using a non-blocking MPI implementation of the ExSum routine, illustrated in Figure
13, it is possible to reduce the communication time, thus improving the speed-up from 11 to
17. The disadvantage is that now a separate array is needed to pack the processor boundary
data relating to each neighbouring processor, thus increasing the memory requirement slightly.

On a moderately large case, which involves a mesh around an F18 fighter aircraft with
518519 nodes, 3786836 sides and 3227966 tetrahedra (Mach number 0.8, angle of attack 1.0),
the speed-up is much improved. Due to memory requirements, at least eight processors are
needed to be able to run this case. Figure 15 gives the speed-up using the non-blocking

Figure 14. The speed-up of the FLITE3D-FS on a mesh around an M6 wing with 29215 nodes. Running
on a Cray T3E-900.
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Figure 15. The speed-up of the FLITE3D-FS on a mesh around an F18 fighter aircraft with 518519
nodes. Running on a Cray T3E-900.

communication. On 128 processors, which is the largest number of processors available in one
partition on the Cray T3E machine, the speed-up is 80, assuming a perfect speed-up for eight
processors. Tables II and III give some detailed statistics of the code on 64 and 128 processors.
It is seen that the average number of neighbours per processor on the coarsest mesh is 21 on
64 processors and 26 on 128 processors. These are much smaller than the M6 case (Table I),
where on average there were 38 neighbours on 64 processors.

The fact that smaller meshes tend to give a larger numbers of neighbours on the coarsest
mesh can be explained as follows. A root node on the coarsest mesh has many leaf nodes on
the finest mesh. The smaller the number of nodes on the fine mesh, the more likely it is that
these leaf nodes may be spread over many processors. As a result, on the coarsest mesh these
processors becomes neighbours to each other since they all share the same root node.

This smaller number of neighbours on larger meshes helps to control the communication
time on the coarsest level. Unlike in the M6 case, where the communication time on the
coarsest mesh (level 4) is higher than that on level 3, in both Tables II and III, the
communication time on the coarsest mesh is less than that on other levels. This is more clearly

Table II. Detailed breakdown statistics on 64 processors; F18 mesh, 100 iterations.

3 4Mesh level 1 2

3 786 836 630 692 104 863 17 642Total number of sides
59 169 9855 1638 276Average number of sides

2.14.619.2122.4Computation time
12Average number of neighbours 14 2111

Total length of messages 154 898 66 258 28 512 14 828
16.419.625.945.0Communication time (blocking)

Communication time (non-blocking) 21.1 17.5 11.915.3
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Table III. Detailed breakdown statistics on 128 processors; F18 mesh, 100 iterations.

1 2 3Mesh level 4

3 786 836 630 692 104 863 17 642Total number of sides
29 585 4927Average number of sides 819 138
59.8 9.5 2.5Computation time 1.1
12 13Average number of neighbours 16 26

Total length of messages 219 636 96 294 44 172 25 846
50.6 30.8Communication time (blocking) 21.1 16.2

Communication time (non-blocking) 18.8 15.8 15.0 11.9

shown in Figure 16, where the communication time on each level of the mesh has been
plotted against the number of processors. It can be seen that the communication time on
the level 1 mesh reduces as more processors are used. On the coarser meshes, particularly
on the fourth level, the communication time stays relatively flat. Nonetheless, the communi-
cation time on the coarse meshes is always smaller than that on the finer meshes. Figure 17
shows the overall communication and computation time. It is seen that the computation
time reduces proportionally to the number of processors used. The communication over all
mesh levels stays relatively flat. On 128 processors, the ratio between the computation time
and the communication time is about 1.2. If the size of the mesh increases further, the
computation time, which is proportional to the number of sides, should increase faster than
the communication time, which is proportional to the length of processor boundary and the
number of neighbours. Therefore, for larger meshes, the scalability of the code is expected
to be even better.

Figure 16. The communication time on each level of mesh. Mesh around an F18 fighter aircraft with
518519 nodes. Running on a Cray T3E-900.
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Figure 17. The overall communication time and the computation time. Mesh around an F18 fighter
aircraft with 518519 nodes. Running on a Cray T3E-900.

6. CONCLUSIONS

In this paper the approach to parallelize the FLITE3D industrial code has been discussed and
numerical results illustrating its performance have been given. The strategy employed in the
parallelization of an agglomeration-based multigrid algorithm has eliminated the need for
communication between different levels of meshes. Numerical results have shown that scalabil-
ity on moderately large meshes is satisfactory, proving that this approach is a viable alternative
to that of Reference [9]. The code was delivered to British Aerospace in 1998. It has been used
by British Aerospace routinely and has since proved to be robust and scalable on real
industrial problems.

Element-based partitioning has been used in this work because this was the approach taken
in our previous successful parallelization of the single grid FELISA code, a code employing
similar technology as FLITE3D. With hindsight, it may have been beneficial to adopt a
node-based partitioning instead. The coarsest mesh could then be partitioned first by utilizing
the edge weight (the number of original edges an edge on the coarsest mesh represents) and
node weight (the number of original nodes a node on the coarsest mesh represents). Commu-
nication between different levels of mesh would again be eliminated because all leaf nodes
reside on the same processor as the root node. Communication time on the coarse meshes may
also be under better control because the partitioning would have been carried out on the
coarsest mesh. This remains an interesting topic for future work.
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